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Abstract

The article deals with magnetic ®eld damping of free-convective ¯ows in cavities similar to those used in arti®cial

growth of single crystals from melts (horizontal Bridgman con®gurations) and having aspect ratios A equal to 1 or
4. The combined e�ect of wall electrical conductivity and direction of the magnetic ®eld on the buoyancy-induced
¯ow of gallium was investigated numerically. The validation of the numerical method was achieved by comparison

with both experimental and analytical data found in the literature. The plotted results for variation of velocity,
temperature and Nusselt number in terms of the Hartmann number Ha and Rayleigh number Ra showed a
considerable decrease in convection intensity as the magnetic ®eld is increased, especially for values of Ra situated

around 105. The calculations also showed that the horizontally directed magnetic ®eld (perpendicular to the y±z
plane) is the most e�ective in controlling the ¯ow and hence the speed of growth of the crystal and its composition
in dopants. Also, wall electrical conductivity enhances damping by changing the distribution of the induced electric
current to one which augments the magnitude of the Lorentz force in regions where it acts as a sink and

diminishing it in the remaining parts of the cavity. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the majority of the methods used for synthetic

production of single crystals, the crystal grows slowly

from a ¯uid nutrient contained in a crucible of variable

geometry. The latter is pulled from the hot region of a

furnace to a colder one where the system solidi®es.

The liquid phase is distinguished from the solid phase

by the solidi®cation front (Fig. 1). In order to keep the

nutrient in its molten state, the crucible must be main-

tained at a temperature above the freezing point which

of course is the temperature at the crystal growth inter-

face (the solidi®cation front). The resulting tempera-

ture gradient within the melt generates natural

convective ¯ow. These motions are of great concern to

the crystal grower because they control the transport

of dopant, impurities and heat to the growth interface.

This concern is re¯ected in the numerous review

articles on the subject that have been published over

the past twenty years (Carruthers [1], Hurle [2],

Kobayashi [3], Langlois [4]).

Also, crystal materials are good electrical conductors

in their liquid state. This property opened the possi-

bility of using MHD e�ects to modify the ¯uid motion

and therefore obtain crystals which satisfy better the
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requirements of present technology. One can mention

for example the signi®cant improvements in the quality

of silicon crystals that have been obtained by

Czochralski growth in a strong magnetic ®eld

(Hoshikawa et al. [5], Kim et al. [6]). The modi®cation

of ¯uid motion consists in the quenching of ¯ow oscil-

lations and therefore the temperature ¯uctuations of

which they are responsible. This improves the resulting

crystal quality by avoiding the oscillatory crystal

growth which may result from temperature ¯uctuations

and which is characterised by a non-uniform distri-

bution of dopant in the crystal.

More recently, Campbell and Koster [7] experimen-

tally proved that the intensity of convection may mod-

ify the shape of the solidi®cation front. This was done

using X-rays visualisation of pure gallium in a horizon-

tal Bridgman con®guration. The control of convection

intensity can be achieved by exposing the ¯ow to a

magnetic ®eld of varying or constant strength and/or

direction (Davoust et al. [8], Benhadid and Henry [9],

Alchaar et al. [10], BuÈ hler [11]).

The work of Davoust et al. [8] is a review of recent

results on the MHD damping and reorganisation of

the convective ¯ow in a horizontal Bridgman con®gur-

ation. The numerical results obtained for

0 R Ha R 100 complement their asymptotic theory

Nomenclature

A aspect ratio
B magnetic ®eld [T]
Bo vertical magnetic ®eld [T] (see Fig. 1)

Fx Lorentz force in the x-direction
Fy Lorentz force in the y-direction
Fz Lorentz force in the z-direction

g gravitational acceleration [m sÿ2]
Ha Hartmann number=BL(s/rn )1/2

jx electric current in the x-direction [A mÿ2]
Jx dimensionless electric current in the

x-direction,=jx/(a/L )sB
jy electric current in the y-direction [A mÿ2]
Jy dimensionless electric current in the

y-direction,=jy/(a/L )sB
jz electric current in the z-direction [A mÿ2]
Jz dimensionless electric current in the

z-direction,=jz/(a/L )sB
L length of the enclosure [m]
Nu average Nusselt number

Nx nodes number in the x-direction
Ny nodes number in the y-direction
Nz nodes number in the z-direction

p pressure [Pa]
P dimensionless pressure,=p/r0(a/L )2

Pr Prandtl number,=n/a
Ra Rayleigh number,=gb(THÿTC)L

3/(an )
Rem magnetic Reynolds number,=msvV0vL
t time [s]
T temperature [K]

TH hot temperature [K]
TC cold temperature [K]
TW wall temperature [K]

u velocity in the x-direction [m sÿ1]
U dimensionless velocity in the x-direction,

=u/(a/L )

v velocity in the y-direction [m sÿ1]
V dimensionless velocity in the y-direction,

=v/(a/L )

w velocity in the z-direction [m sÿ1]
W dimensionless velocity in the z-direction,

=w/(a/L )

x Cartesian coordinate in the x-direction [m]
X dimensionless Cartesian coordinate in the

x-direction,=x/L

y Cartesian coordinate in the y-direction [m]
Y dimensionless Cartesian coordinate in the

y-direction,=y/L
z Cartesian coordinate in the z-direction [m]

Z dimensionless Cartesian coordinate in the z-
direction,=z/L.

Greek symbols

a thermal di�usivity [m2 sÿ1]
b thermal expansion coe�cient [Kÿ1]
dH dimensionless thickness Hartmann layer,

=Haÿ1

dS dimensionless thickness side layer, =Haÿ1/2

y dimensionless temperature,=(TÿTC)/
(THÿTC)

mm magnetic permeability [H mÿ1]
n kinematic viscosity of the ¯uid [m2 sÿ1]
r density of the ¯uid [kg mÿ3]
r0 density at reference temperature [kg mÿ3]
s electrical conductivity [Oÿ1 mÿ1]
t dimensionless time,=t/(L 2/a )
c electrical potential [V]
j dimensionless electric potential,=c/(aB ).
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and show how the typical MHD ¯ow organisation

with cores, Hartmann layers and side layers builds up

as Ha increases. An experiment, using mercury to

model the liquid pool, allowed the authors to check

their predictions.

Alchaar et al. [10] numerically investigated the e�ect

of a transverse magnetic ®eld on buoyancy driven con-

vection in a shallow rectangular cavity. The study cov-

ers the range of the Rayleigh number, Ra, from 102 to

105, the Hartmann number Ha, from 0 to 102, the

Prandtl number, Pr from 0.005 to 1 and aspect ratio

of cavity, A from 1 to 6. Comparison of their results

was made with an existing analytical solution

(Garandet et al. [12]). At high Hartmann numbers,

both analytical and numerical analyses revealed that

the velocity gradient in the core is constant outside the

two Hartmann layers at the vicinity of the walls nor-

mal to the magnetic ®eld.

The numerical work by Benhadid and Henry

focused on the action of a constant magnetic ®eld on

the ¯ow that develops in a di�erentially heated

Bridgman cylindrical cavity. Their three-dimensional

¯ow results showed that the strength of the applied

magnetic ®eld leads to several fundamental changes in

the properties of thermal buoyant convection. The

convective circulation progressively looses its intensity

and is reorganised speci®cally depending on the direc-

tion (vertical, longitudinal or transversal) of the

applied magnetic ®eld. This leads to the appearance of

speci®c velocity pro®les, of Hartmann layers and of

parallel layers, and to the tendency towards two-

dimensionality. The authors linked these structural

changes with the repartition of the induced electric cur-

rent inside the cavity.

BuÈ hler investigated analytically buoyancy driven

laminar MHD ¯ow in long vertical channels. He de-

rived solutions for general temperature distributions.

He found the typical subregions for the ¯ow namely

the inviscid core, surrounded by Hartmann layers and
side layers. He obtained high velocity jets along per-
fectly conducting walls and concluded that the main

di�erence compared with pressure driven duct ¯ows is
that the core not necessarily exhibits a two-dimensional
behaviour.
The present contribution falls within the scope of

the latter two works but deals for simplicity with a
cubic enclosure ®lled with gallium. The combined
e�ects on the ¯ow structure of wall electrical conduc-

tivity and magnetic ®eld orientation are numerically
investigated and the results are discussed within the
context of Bridgman crystal growth.

2. The mathematical model

2.1. The model equations

The con®guration chosen is the cubical enclosure
shown in Fig. 2. One vertical wall is maintained at a
high temperature TH (which corresponds to the tem-

perature of the furnace in a real crystal growth situ-
ation) and the opposing vertical wall is maintained at
a lower temperature TC (which corresponds to the tem-

perature at the solidi®cation front (Fig. 1)). The
remaining walls are thermally insulated. The enclosure
is ®lled with liquid gallium whose Prandtl number is
0.025. The ¯ow can be exposed to a uniform magnetic

®eld parallel to one of the three coordinate directions.
In order to evaluate the e�ect of applying the magnetic
®eld on the natural convection of the liquid metal, the

governing equations are obtained using the following
assumptions:

. Joule heating is negligible.

. Viscous dissipation is negligible.

. The induced magnetic ®eld is negligible because
Rem<<1.

Fig. 1. Horizontal Bridgman crystal growth con®guration.
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. The liquid metal is not magnetized (mm=1).

. The liquid metal is incompressible and Newtonian.

. The Boussinesq approximation holds.

The adimensionnalised equations are given below [Eqs.
(1)±(6)]. The quantities used for adimensionnalising the
coordinates, time, velocities, pressures, temperature

and current density are, respectively, de®ned by the
formulae:

X,Y,Z � x,y,z=L; t � t=�L2=a�;

U,V,W � u,v,w=�a=L�; P � p=r0�a=L�2;

y � �Tÿ TC�=�TH ÿ TC�; J � j=�a=L�sB

where a, r, s, t, j, B represent, respectively, the thermal
di�usivity of the metal, its density, its electrical con-

ductivity, time, electric current intensity and magnetic
®eld intensity. u, v and w are the velocity components
in directions x, y and z, respectively.

Continuity

@U

@X
� @V
@Y
� @W
@Z
� 0 �1�

x-direction momentum

@U

@t
� @ �UU �

@X
� @ �VU �

@Y
� @ �WU �

@Z

� ÿ@P
@X
� Pr

�
@ 2U

@X 2
� @ 2U

@Y 2
� @ 2U

@Z 2

�
� Fx �2�

y-direction momentum

@V

@t
� @ �UV �

@X
� @ �VV �

@Y
� @ �WV �

@Z

� ÿ @P
@Y
� Pr

�
@ 2V

@X 2
� @ 2V

@Y 2
� @ 2V

@Z 2

�
� Ra Pr

y� Fy �3�

z-direction momentum

@W

@t
� @ �UW �

@X
� @ �VW �

@Y
� @ �WW �

@Z

� ÿ @P
@Z
� Pr

�
@ 2W

@X 2
� @

2W

@Y 2
� @

2W

@Z 2

�
� Fz �4�

Energy

@y
@t
� @ �Uy�

@X
� @ �Vy�

@Y
� @ �Wy�

@Z

� @ 2y
@X 2

� @ 2y
@Y 2

� @ 2y
@Z 2

�5�

Electric potential

@ 2j
@X 2

� @ 2j
@Y 2

� @ 2j
@Z 2

� @W

@Y
ÿ @V
@Z

�horizontally applied magnetic field �
�6a�

@ 2j
@X 2

� @ 2j
@Y 2

� @ 2j
@Z 2

� @U

@Z
ÿ @W
@X

�vertically applied magnetic field �
�6b�

Fig. 2. Various orientations of the applied magnetic ®eld in a metal ®lled enclosure.
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@ 2j
@X 2

� @ 2j
@Y 2

� @ 2j
@Z 2

� @V

@X
ÿ @U
@Y

�transversally applied magnetic field �
�6c�

where:

Ra � gb�TH ÿ TC�L3

an
and Pr � n

a

are the Rayleigh and Prandtl numbers, respectively.

The above equations have been obtained after taking
the divergence of Ohm's law i.e.

J � s�ÿrj� V� B�

and introducing the conservation of charge principle:

r � J � 0

Fx, Fy, Fz represent the components of Lorentz force.
Jx, Jy, Jz represent the electric current in directions x,

y and z. The components of F and J have di�erent ex-
pressions according to the orientation of the magnetic
®eld B. The components of J have been obtained using
Ohm's law whereas those of F have been obtained

using the equation: F=J � B.

. Case of a horizontal magnetic ®eld

When B is applied in the x-direction, the expressions
are:

Fx � 0 Jx � ÿ @j
@X

Fy �
�
ÿ @j
@Z
ÿ V

�
Ha2 Pr Jy � ÿ @j

@Y
�W

Fz �
�
@j
@Y
ÿW

�
Ha2 Pr Jz � ÿ @j

@Z
ÿ V �7�

. Case of a vertical magnetic ®eld

When B is applied in the y-direction, the expressions
are:

Fx �
�
@j
@Z
ÿU

�
Ha2 Pr Jx � ÿ @j

@X
ÿW

Fy � 0 Jy � ÿ @j
@Y

Fz �
�
ÿ @j
@X
ÿW

�
Ha2 Pr Jz � ÿ @j

@Z
�U �8�

. Case of a transversal magnetic ®eld
When B is applied in the z-direction, the expressions

are:

Fx �
�
ÿ @j
@Y
ÿU

�
Ha2 Pr Jx � ÿ @j

@X
� V

Fy �
�
@j
@X
ÿ V

�
Ha2 Pr Jy � ÿ @j

@Y
ÿU

Fz � 0 Jz � ÿ @j
@Z

�9�

where Ha is the Hartmann number, Ha=BL(s/rn )1/2.

2.2. Initial and boundary conditions

The above equations have been solved subject to the

following conditions:
Initial conditions: at t=0, U=V=W= 0 and y=0.
Boundary conditions: for t>0

At x � 0 U � V �W � 0 �no slip condition� and

y � 1 �fixed wall temperature TW � TH�

At X � 1 U � V �W � 0 and y � 0

�fixed wall temperature TW � TC�

At Y � 0 U � V �W � 0 and @y=@Y � 0

�thermally insulated wall�

At Y � 1 U � V �W � 0 and @y=@Y � 0

At Z � 0 U � V �W � 0 and @y=@Z � 0

�thermally insulated wall�

At Z � 1 U � V �W � 0 and @ y =@ Z � 0

. For perfectly electrically insulating walls, the bound-
ary condition for all walls is (@j/@n )=0, where j rep-

resents the electrical potential, and n the direction
normal to the wall in question.

. For perfectly electrically conducting walls, j=0

holds for all walls.

3. The numerical procedure

Eqs. (1)±(6) have been solved by using a ®nite

volume method coupled to a pressure correction
equation based on the SIMPLER algorithm (Patankar
[13]). Scalar quantities (P, y, and j ) are stored in the
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centre of these volumes whereas the vectorial quantities

(U, V, W, and J ) are stored on the faces. A fully im-

plicit time marching scheme is employed (i.e. solutions

have been obtained by marching in time). To discretise

the temporal term, a ®rst-order regressive ®nite di�er-

ence formula was used. The discretisation of spatial

terms required a second-order central di�erence

scheme in the di�usion part of the equations and a

power law scheme (Patankar [13]) for the convection

part. The discretised equations were solved iteratively

in each direction along the axes using the line-by-line

Tridiagonal-Matrix-Algorithm.

In MHD-¯ows boundary layers di�erent to those in

ordinary hydrodynamics occur. At walls perpendicular

to the magnetic ®eld Hartmann layers of thickness

dH0Haÿ1 appear which are characterised by an expo-

nential decay of the velocity towards the wall. At walls

parallel to the magnetic ®eld, the so-called side layer

exists, which is di�erent in shape and thickness

(dS0Haÿ1/2) compared to the Hartmann layers.

In order to capture the Hartmann and side layers

and by taking into account the fact that their thickness

diminish as Ha increases (dH0Haÿ1 and dS0Haÿ1/2)
the grid line densities have been chosen according to

the value of the magnetic ®eld B and its direction.

These are given in Table 1.

The increments DX, DY and DZ of the grid used are

not regular. They were chosen according to geometric

progressions of ratio 1.07 which permitted grid re®ne-

ment near the walls; i.e. in the Hartmann and side

layers where large velocity and temperature gradients

exist, thus requiring a larger number of nodes (more

than ®ve nodes in each layer) in order to resolve the

speci®c characteristics of the MHD ¯ow.

The grid used for Ha = 0 was chosen after perform-
ing grid independency tests. The computed average

Nusselt numbers for grids ®ner than 30 � 30 � 20 only
di�er by 5 � 10ÿ4 hence the choice of this grid.
Convergence of the numerical solution was obtained

when the mass, momentum and energy residuals are
below 10ÿ6.

4. Results and discussions

4.1. Code validation in the absence of a magnetic ®eld

In the absence of a magnetic ®eld, the momentum
Eqs. (2)±(4) are solved after setting Fx=Fy=Fz= 0.

The results are represented graphically in Figs.
3(a)±(e).
The ¯ow structure is shown by the velocity vectors

(Fig. 3(a)) and the velocity pro®les along the lines AA
and CC (Figs. 3(a) and (b)). Fig. 3(a) shows that at
the bottom of the cavity the ¯ow is mainly longitudinal

and is directed towards the hot wall (situated at
X = 0.0) and at the top of the cavity the ¯ow is di-
rected towards the cold wall situated at X = 1. These

boundary layers extend from the walls to the centre of
the cavity, a behaviour which is not common in ordin-
ary ¯uids (De Vahl Davis [14]). From Figs. 3(a) and
(b) one can notice that the U, V, and W pro®les are

linear throughout the core region extending from
X = 0.25 to X= 0.75, from Y= 0.25 to Y= 0.75
and from Z= 0.25 to Z= 0.75. Comparison of Figs.

3(a) and (b) reveals the expected behaviour that the
¯ow in the vertical direction is fastest because of the
buoyancy-induced acceleration experienced by ¯uid

particles transported in this direction.
A preliminary validation of the numerical method

can be done, at this stage, via theoretical estimation of
the magnitude of the maximum velocity, which is ap-

proximately 30 (Figs. 3(b) and (c)). One can, in e�ect,
write, for large values of the Rayleigh number, that
equilibrium exists between buoyancy forces and inertia

forces, which gives:

rU 2

L
1rgbDT

where L is a characteristic length. By using the above
adimensionalisation, one gets:

U � �Ra Pr�1=2 � �105 � 0:025�1=2150

which is very near to the value in Fig. 3(b). This pro-
cedure also allows the estimation of the Peclet number

(Pe=UL/a ) which is therefore given by:

Pe � �Ra Pr�1=2

Table 1

Meshes used in the computations

Ha Mesh size, Nx � Ny � Nz

No magnetic ®eld 0 30 � 30 � 20

x-Direction magnetic ®eld 25 44 � 30 � 20

50 64 � 30 � 20

75 70 � 30 � 20

100 90 � 30 � 20

y-Direction magnetic ®eld 25 30 � 44 � 20

50 30 � 64 � 20

75 30 � 70 � 20

100 30 � 90 � 20

z-Direction magnetic ®eld 25 30 � 20 � 44

50 30 � 20 � 64

75 30 � 20 � 70

100 30 � 20 � 90
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Fig. 3. (a) Velocity vector plot in plane PV for Ha= 0 and Ra= 105. (b) Distribution of velocities along line AA for Ha = 0 and

Ra= 105. (c) Distribution of velocities along line CC for Ha = 0 and Ra= 105. (d) Isotherms in plane PV for Ha = 0 and

Ra= 105. (e) Temperature distributions for various positions in plane PV, for Ra= 1.682 � 105: comparison with experimental

data (Wol� et al. [15]).
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and has a value of 50. This explains the noticed distor-

tion of the isotherms shown in Fig. 3(d).

The thermal structure of the ¯ow is illustrated by

the isotherms of Fig. 3(d) in plane PV, and the three

pro®les in Fig. 3(e). Fig. 3(e) clearly shows the for-

mation of thermal boundary layers along the vertical

walls. Here also the temperature pro®les in the core

region extending from X= 0.25 to X = 0.75 are lin-

ear. As can be noticed from Fig. 3(d) plotted using a

temperature increment Dy=0.05 between two consecu-

tive isotherms, the isotherms are denser on the lower

part of the hot vertical wall and on the top part of the

cold vertical wall. This indicates the presence of intense

heat transfer across these parts of the walls. In the

core region the ¯ow is stably strati®ed with tempera-

tures increasing from bottom to top. Fig. 3(e) also

shows a satisfactory agreement between the predicted

and measured temperatures in gallium. However, the

numerical results at Y = 0.50 show lower values (up to

10% di�erence) than the experimental data published

by Wol� et al. [15], indicating the presence of stronger

natural convection. This discrepancy is due to the pre-

sence of thermocouple rakes, which tend to suppress

the ¯ow; as indicated by Wol� et al.

Code veri®cation was also done using the bench-

mark solution computed by De Vahl Davis and Jones

[16] for natural convection in a square cavity. They

present tabulated results for a range of Rayleigh num-

bers, Ra = 103, 104, 105 and 106. The quantities Umax,

Vmax, Numin, Numax and Nu of our steady state results

are compared with those obtained by their method.

The results are presented in Tables 2±5. The quantities

Fig. 4. Velocity distributions in the midplane of the cavity: comparison with analytical results for Ra= 800 at the position X= 2:

(a) Ha= 0; (b) Ha = 25; (c) Ha= 50.
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Fig. 5. (a) Current path for Ha= 25 in plane PT. (b) Current path for Ha = 50 in plane PT.

Table 2

Steady state results for Ra= 103

Ra= 103 Present work Benchmark solution

Umax 3.645 3.649

Vmax 3.700 3.697

Numin 0.691 0.692

Numax 1.508 1.505

Nu 1.118 1.118

Table 3

Steady state results for Ra= 104

Ra= 104 Present work Benchmark solution

Umax 16.141 16.178

Vmax 19.578 19.617

Numin 0.588 0.586

Numax 3.548 3.528

Nu 2.247 2.243
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Umax and Vmax are obtained from the velocity pro®les

on the vertical mid-plane and on the horizontal mid-

plane, respectively. The average Nusselt number is

de®ned as: Nu � � 1
0 �@y=@X �dY jx�0. The values of

Numax and Numin are found along the hot wall. The

calculated quantities show a reasonable agreement

with the benchmark solution for Ra = 103, 104 and

105; however, discretisation errors cause noticeable

di�erences (less than 5%) for Ra= 106 because at this

value of Rayleigh number velocity gradients in the

convective terms become important, thus requiring

more nodes in order to get a good resolution of the

¯ow.

4.2. Code validation in the presence of a magnetic ®eld

Comparison was ®rst made here with the analytical
results obtained by Garandet et al. [12] who studied

the e�ect of a vertical magnetic ®eld on buoyancy
driven convection in a two-dimensional shallow cavity
(i.e. having an aspect ratio A equal to in®nity). Using

the parallel ¯ow hypothesis, the authors showed that
the velocity distribution in the core region of the cavity
follows the law:

U � Ra

Ha2
�F sin�Ha Y �� ÿ Y �� �10�

where Y � is the vertical coordinate starting from the

centre of the cavity, and F= 1/[2 sinh(Ha/2)].

Fig. 6. (a) Component Fx of the Lorentz force for Ra= 800 and Ha = 25 in plane PV. (b) Component Fx of the Lorentz force

for Ra= 800 and Ha= 50 in plane PV.

Table 4

Steady state results for Ra= 105

Ra= 105 Present work Benchmark solution

Umax 34.982 34.73

Vmax 68.775 68.59

Numin 0.751 0.729

Numax 7.830 7.717

Nu 4.540 4.519

Table 5

Steady state results for Ra= 106

Ra= 106 Present work Benchmark solution

Umax 65.676 64.63

Vmax 222.598 219.36

Numin 1.083 0.989

Numax 18.74 17.925

Nu 8.945 8.800
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Recently Alchaar et al. [10] studied the range of val-

idity of Eq. (10). A good agreement between their nu-

merical results and the results calculated from Eq. (10)

is obtained provided that the aspect ratio of the cavity

is greater than approximately three. This condition

was taken into consideration in the present study and

validation of the code was achieved using a cavity of

aspect ratio A= 4 and of dimensions 4 � 1 � 1. The

numerical results obtained for Ra= 800 and three

values of the Hartmann numbers are compared with

their analytical counterparts in Figs. 4(a)±(c). A satis-

factory concordance is achieved especially at low

values of Ha.

For all values of the Hartmann number, the ®gures

show a velocity which increases from zero at the wall

to a peak situated in the viscous sublayer and then

drops back to zero at the centre of the cavity (corre-

sponding to Y= 0). The pro®le is cubic when Ha= 0.

Fig. 7. (a) U-velocity component distribution in plane PT, Ra= 105, electrically insulating walls. (b) V-velocity component distri-

bution in plane PH, Ra= 105, electrically insulating walls. (c) Variation of Umax with Ha for the x-oriented magnetic ®eld,

Ra= 105 for both insulating and conducting walls. (d) Lorentz force component distribution in plane PH, Ra= 105, electrically

insulating walls. (e) Current path in plane PH for x-directed ®eld, Ra= 105, electrically insulating walls.
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When Ha is increased, the velocity pro®le in the core

tends to a linear pro®le. The e�ect of viscosity cannot,

however, be neglected in the vicinity of the walls where

one can notice the presence of two thin Hartmann

layers.

In order to give a better insight into the physics

behind the change in ¯ow pattern, sketches of the cur-

rent path in plane PT corresponding to Ha= 25 and

Ha = 50 are given, respectively, in Figs. 5(a) and (b).

The Lorentz forces produced by the interaction

between these currents and the applied vertical ®eld

are given, respectively, in Figs. 6(a) and (b). As can be

noticed from Figs. 5, the ¯owing ¯uid, generates under

the action of the magnetic ®eld, currents which are

positive in the neighbourhood of the top wall and

negative in the neighbourhood of the bottom wall.

This di�erence in sign is due to the di�erent directions

of the ¯uid in contact with the top and bottom walls.

Because of this di�erence in sign, the Lorentz force

acting on the top layers of the ¯uid is negative (i.e. a

retarding force) and that acting on the bottom layers

positive (i.e. also a retarding force since the ¯uid ¯ows

in the negative direction towards the plane X= 0).

When the value of Ha is increased, the magnitude of

Lorentz forces increases (Fig. 6) and therefore reduces

the magnitude of the velocity. This provokes the

damping of the ¯ow.

A second validation of the present code was per-

formed using the benchmark solution in the work of

Fig. 7 (continued)

Fig. 8. Isotherms in plane PV for the vertically oriented

magnetic ®eld and Ra= 105: (a) Ha= 25; (b) Ha = 50; (c)

Ha = 100.
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Ozoe and Okada [17] who performed computations of

the free convective ¯ow in a cubical enclosure in the
presence of a magnetic ®eld. Table 6 gives the values
of the average Nusselt number obtained when the

magnetic ®eld is oriented in the x-direction, for two
values of Ha (100 and 200). The di�erence between
our results and those of Ozoe and Okada can be seen

to be very small (less than 1.5%).

4.3. Structure and intensity of the ¯ow for the three
orientations of the magnetic ®eld

The numerical results obtained for the vertically
oriented magnetic ®eld show the appearance of the
Hartmann layers near the top and bottom walls (Fig.

7(a)). The velocity decreases exponentially in these
layers. The pro®les with maximum velocity are those
in contact with the lateral walls (Z= 0 and Z= 1).

The position of the peaks in these layers shifts towards
the top and bottom walls as the Ha number is
increased from 0 to 100. Also, in the core (between the

Hartmann layers) the U pro®le varies linearly with Y
and is symmetrical with respect to plane PH (Y= 0.5).
This distribution is similar to that given by the analytic
solution. The parallel layers (Fig. 7(b)) consist of simi-

lar pro®les, with same value of the maximum velocity
and a plateau extending from X= 0.25 to X= 0.75,
where the ¯uid possesses a vertical component of vel-

ocity close to zero.
The e�ect of the magnetic ®eld orientation and

strength on the ¯ow is illustrated in Fig. 7(c) for the x-

directed ®eld at a Rayleigh Ra= 105. The damping of
the ¯ow increases for growing Ha (increasing magnetic
®eld strength).
The theoretical estimation of the maximum velocity

can also be performed here, for validation purposes,
by considering, for example in the case of a vertical
®eld and electrically insulating walls (Jz=sUB ), equi-

librium in the core region between electromagnetic
forces and buoyancy forces, which gives Ucore 1 Ra/
Ha 2, and Hartmann layers of order Haÿ1. Numerical

application gives, for Ra= 105 and Ha = 100,
U= 10, which compares well with the magnitude
shown in Fig. 7(a).

Table 6

Average Nusselt numbers for Ra= 106 and Pr = 0.054. The

magnetic ®eld is oriented in the x-direction

Present work Nu for Bx Ozoe and Okada Nu for Bx

Ha= 100 4.4219 4.4577

Ha= 200 2.8804 2.9168

Fig. 9. Isotherms in plane PV for the three orientations of the

magnetic ®eld, when Ha = 100 and Ra= 105: (a) Bx; (b) By;

(c) Bz.
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4.4. Current path and Lorentz force

For an x-oriented magnetic ®eld, Fig. 7(d) shows the

distribution of the vertical component Fy of the

Lorentz force in plane PT. It acts as a sink term in the

proximity of the hot wall and as a source term in the

proximity of the cold wall. In both cases it counteracts

the buoyancy force and leads to the reduction of the

velocity of the various layers of the ¯uid. The current

distribution responsible for this force is shown in Fig.

7(e) from which one can notice that negative currents
are induced near the hot wall where the ¯ow is di-

rected upwards and positive currents induced near the
cold wall where the ¯ow is directed downwards and
that due to wall electrical insulation the iso-current
lines close within the ¯uid.

4.5. E�ect on the thermal structure

The isotherms for the vertically directed magnetic

Fig. 10. Variation of the average Nusselt number as a function of Ra, Ha and magnetic ®eld orientation: (a) Bx; (b) By; (c) Bz.
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®eld are shown in Figs. 8(a)±(c). Strong convection is
indicated by distorted isotherms within the cavity. As

the Ha is increased, thermal strati®cation in the core is
more and more destroyed and the isotherms become
more and more parallel to the vertical walls, indicating

the dominance of the conduction regime.
Also, the isotherms in the horizontally oriented mag-

netic ®eld case (Fig. 9(a)) are the least distorted imply-

ing the reduced convective heat transfer as compared
to other orientations.

4.6. Nusselt number variation

The above conclusions are further supported by
Figs. 10(a)±(c) giving the variation of the Nusselt num-

ber as the Rayleigh and the Hartmann numbers are
increased. As can be seen the damping is highest for
values of Ra situated around the value Ra= 105 and

for high strengths of the magnetic ®eld.

4.7. E�ect of wall conductivity

Figs. 11(a) and (b) show that for insulated walls the
surface representing the distribution of electric poten-

tial presents variations less important than those corre-
sponding to conducting walls. These high gradients in
electric potential in the case of conducting walls are
re¯ected, according to Ohm's law [Eq. (8)] in higher

values of the electric current (Figs. 12(a) and (b)) and
hence in those of the Lorentz force. Wall electrical
conducting leads therefore to lower source or to higher

sink terms in the momentum equations, depending on
the ¯ow direction; i.e. to an overall damping of the
¯ow. This can be noticed through the comparison of

the maximum velocities shown in Fig. 7(c). Another
way for viewing the e�ect of magnetic ®eld is to use
the Lycoudis number Ly de®ned by Ly = 2 Ha 2/Ra 1/2

and traditionally employed to correlate the heat trans-

fer rate of free convection of a liquid metal in an exter-
nal magnetic ®eld (Lycoudis [18]; Okada and Ozoe
[19]). The combination of the Ha and Ra in a single

number has been dictated by the fact that damping is
only limited to a certain range of the Rayleigh number
(Figs. 13(a)±(c)). All three ®gures show that convection

is best damped when the walls are electrically conduct-
ing.

5. Conclusion

A numerical procedure to predict the e�ect of wall

electrical conductivity and magnetic ®eld direction on
natural-convective ¯ow in a cavity has been proposed.
A good concordance between numerical results and ex-

perimental or analytical data was obtained during code
validation.
In the absence of a magnetic ®eld the ¯ow of gal-

lium showed a behaviour which is di�erent from that

of an ordinary ¯uid and a heat transfer coe�cient

which is not uniform on the cold and hot faces of the

cavity.

When a vertical magnetic ®eld is imposed in a rela-

tively shallow bi-dimensional cavity (of aspect ratio

Fig. 11. Distribution of electrical potential in plane PH for

Ha = 75 and Ra= 105: (a) insulating walls; (b) conducting

walls.
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Fig. 12. Projection of electric current vectors in plane PT for Ha = 75 and Ra= 105: (a) insulating walls; (b) conducting walls.
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A= 4), the velocity pro®le changes from a cubic shape

(Ha= 0) to one with a constant gradient throughout

the core and peaks in the vicinity of the walls. The

peaks shift towards the walls as Ha is increased.

The structure of the ¯ow in the three-dimensional

case is complex and showed Hartmann layers with

varying value of the peaks in the z-direction. The side

layers however have similar peaks. For a given orien-

tation of the magnetic ®eld, the maximum velocities in

the cavity diminish as Ha is increased, implying a

decrease in intensity of ¯uid currents circulating to-

and-fro between the hot and cold walls. A comparison

of the results for the three orientations revealed that

the horizontal one leads to the best damping of the

¯ow. Also, wall electrical conductivity changes the

Lorentz force distribution by increasing it in regions

where it opposes the ¯ow and decreasing it in the

remaining regions where it is favourable to the ¯ow:

Fig. 13. E�ect of wall electrical conductivity on heat transfer across the hot and cold faces: (a) Bx; (b) By; (c) Bz.
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the consequence being an enhanced damping of the
¯ow.

In conclusion, the results indicate that one can con-
trol the ¯ow via a good choice of the strength and
direction of the magnetic ®eld, as well as of the electric

conductivity of the cavity walls. In view of further stu-
dies aiming at investigating the utility of damping on
the transport and ®xation of dopants and impurities

during crystal growth, the present numerical procedure
appears to be a convenient tool which o�ers the possi-
bility of a qualitative assessment of such a process.
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